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1. Preliminaries 

Throughout this paper, ‘topos’ always means Grothendieck topos. The first- 
order languages, formulas, and theories that we consider are always assumed to be 
f’n!,zry. If ,I- is a theory, thsn ‘.&provable’, ‘consistent with .f’, and related 
i;oncepts are always to be understood as referring to classical logic. Thus, although 
the &ssifying topos of .I is defined in terms of intuitionistic models of .J in various 
topoi, our criterion for its Booleanness is expressed in terms of the traditional 
classical model theory of .% We temporarily assume, for notational simplicity, that 
we are dealing with a single-sorted language. After the proof of Theorem 1, yve 
indicate how our arguments can be applied to multi-sorted theories. 

The geometric formulas of a first-order language L with equality are those 
obtainable from atomic formulas by fitrite conjunction (including the empty ccn- 
junction, trtre), finite disjunction (including the empty disjunction, false), and 
existential quantification. Geometric formulas can be characterized model- 
theoretically as the formulas whose satisfaction is preserved by arbitrary (not 
necessarily surjective) homomorphisms of L-structures; see (3, 85.2). Topos- 
theoretically, their key property is that, if M is an L-structure in a topos f(, if 
,f‘: .r .-) I( is a geometric morphism, and if @ is a geometric formula, then the truth 
va!ues of @ in M and .f*M satisfy Il@li,-1,21=f*II@l(i, zI, i.e. .f* preserves the truth value 
of Q). 

A ,mmefric sequent is a sentence of the form I?x (@+u,), where @ and w are 
gee!: :> Eric formulas and t.:very variable free in $ or w occurs in the list x. (We 
syst.~nra:ically use boldface letters like x for finite sequences. ) A geometric theory is 
a theory asiomatized by geometric sequents. It follows from the preservation of 
geometric formulas under geometric morphisms that, if f : ,+- + t is a geom::tric 
morphism of topoi an4 M is a model in : of a geometric theory .Y‘, then f*M i!; a 
model of /‘ in .K Barr’s l’heorem [S, 97.51 implies that, if one geometric sequent is 
deducible from certain of&t-s (in classical logic, according to our convention), then 
the deduztion can be ckrr~;d out in intuitionistic logic as well. Thus, the gcumetric 
sequents provable in a geometric theory .I- hold in all models of .I- in arbitrary 
topoi. 

It’ 1. is a geometric theory, then there exists a topos ‘5, called the ckassifving copes 
cut’ 1, and there exists a model M of .I- in 6, called the universal rnoc?el of L such 
Chat, for any topos t i, the category of geometric morphisms f: .F + r! and n;-!!ural 
transformations rj :.f’*--+ s* is equivalent to the category of models of .I- in .f lrnd 
homomorphisms, the identity morphism of (5 corresponding to the model M. Thus, 
.M has the universal property that every model of .i in any topos .F can be obtained 
(up to isomorphism) as f *M for a unique (up to natural isomorphism) geometric 
morphism f : . i + I(. Of the various constructions of classifying topoi, the one of 
Joyal and Reyes described in [5, $7.41 will be useful in what follows, so we give an 
outline of it. 

Given a geometric theory 1, we shall define its s_vntactic site (1~ J); the classifying 
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topos will be the topos of sheaves on this site. An object of V is a formal class term 
{x 1 e(x)} where e(x) is a geometric formula whose free variables are among x. Ne 
adopt the convention that a formula or class term is not changed if its bound 
variables (including the x in {.x 1 @(x)}) are renamed subject to the usual precautions 
for avoiding clashes. To define morphisms from {x 1 e(x)} to { y 1 v( yj), we A=ay 
and do assume that the lists x and y are disjoint; a morphism is then an equivalence 
class, with respect to .&provable equivalence, of geometric formulas 0(x; y) such 
that the following geometric sequents are provable in .fi i 

IQ VY b @(x, y) A e(x, z)-+y = 3). 

(Ifyisyr ,..., y,andzisz, ,..., zn, then3yisYyr l 3~~ and y = ?: is the conjunction 
of the n formulas yi =zi.) The morphism defined by e(x, y) will be c&led 
[x-y 10(x, y)]. The composite of [x-y 1 e(,, y)] and [ y-z I q( y, z)] is defined to be 
[x-z 1 ay (0(x, y)~q(y, z))]. It is easy to check that this defines a category %. %Je 
make it a site by defining a sieve on { y 1 w(y)} to be J-covering if and only if it 
contains a finite family of morphisms 

for which the geometric sequent 

‘u (V/(Y)+ v 3~~ ei(xi, y)) 

is provable in 3; it is easy to check that J is a Grothendieck topology. Fina.;y, 
according to Theorem 7.45 of [S), the topos &(.J/) of sheaves on the site (‘6, J) is a 
classifying topos for the theory .K 

Observe that { y I v(y)} is covered by thQ; empty sieve if and only if w(y) is 
inconsistent with K, i.e. .F proves the geometric sequent Vy (w( _v)+false). Such 
objects can be deleted from the site without changing the to )os of sheaves, 
according to [4, 111. 4.1). More precisely, we let X” be the full st.bcategory of % 
whose objects are (x I e(x)} for geometric e(x) consistent with ,f, Bnd we let J’ be 
the topology on Y; ’ induced by J. Then n(X) is also the topos of sheaves on (‘/: ‘, J’). 
We note for future reference that, since J-coverings are never empty, J’ is included 
in the double-negation topology on % ‘. We also note that, if 

is any morphism of V, then 0(x, y) is consistent with .;/. This follows immediately 
from the facts that @(.v) is consistem with X, by definition of E”, and that .F proves 
Vx (@(x)+?y 0(x, y)), by definition of morphisms. 
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2. Theories classified by Boolean topoi 

Theorem 1. The classifying topos 8(Y) of a geometric theory Y is Boolean if and 
only if both of the following conditions are satisfied. 

(a) Every formula in the language of .T is Y-provably equivalent to a geometric 
formula. 

(b) For every finite list x of variables, there are, up to Sprovable equivalence, 
only finitely many formulas with free variables among x. 

Before proving the theorem, we comment on the conditions (a) and (b). Recall 
our convention that ‘.&provable’ refers to classical logic. The preservation theorems 
in 13, $5.21 imply that (a) is equivalent to requiring that every formula is J-provably 
equivalent to a positive formula and to an existential one. The positivity 
requirement trivially reduces to 

(a ,) For each predicate symbol R of L (including equality), there is a positive 
formula G(X) Y-provably equivalent to OR. 

And equivalence of arbitrary formulas to existential formulas means 
(az) .;r is model-complete. 
Condition (b) can also be expressed in more familiar terms. First, taking the list x 

t.3 be empty, we infer from (b) that there are only finitely many inequivalent 
sentences, i.e. 

(b 1) .T has only finitely many completions. 
Condition (b) for a theory J- clearly implies the same condition for all the 

completions of 7. In the presence of (bl), the converse implication holds as well, for 
the . I’-provable-equivalence class of a formula @ is uniquely determined by the list of 
./-‘-provable-equivalence classes of # as .f’ ranges over all completions of Y. Thus, 
condition (b) for ./ is equivalent to the conjunction of (bl) with “all completions of 
.I” satisfy (b)“. For countable complete theories, (b) is Ryll-Nardzewski’s criterion 
[3, Theorem 2.3.131 for HO--categoricity (where we include among )lo-categorical 
theories the trivial ones whose models are finite). In the case of an uncountable 
complete theory, condition (b) still implies Ho-categoricity, since this half of Ryll- 
Nardzewski’s theorem does not require countability of the theory. ( No-categoricity 
may, of course, be vacuous; the theory need not have any countable models.) We 
shall refer to condition (b), for complete theories, as’persistent KO-categoricity, and 
we digress briefly to justify this terminology. 

If a complete theory J- satisfies (b), then it continues ;P io so in every Boolean 
extension V ’ of the universe V of sets. More precisely the truth value of “.P 
satisfies (b)” is 1, and therefore, by our previous remarks, so is “.Y‘ is NO- 
categorical”. Thus, the No-categoricity of ,/’ persists when we pass to V”. Con- 
versely, if .J remains &categorical in every V ‘, then in particular we can choose 
d SO that the cardinality of .I- is collapsed to HO in V 1. Then Ryll-Nardzewski’s 

theorem, applied in V ’ to the countable (in V “) &,-categorical theory Y, tells us 
thd1 ,I- satisfies (b) in V ‘. But (b) is clearly absolute, so ,;T really sat&&s (G). This 



Boolean classifying topoi 19 

shows that (b) is equivalent to the assertion that Y is NO-categorical in V” for all 
.d; hence the terminology ‘persistently HO-categorical’. 

With this terminology, we have that (b) is equivalent to the conjunction of (bl) 
and 

(bz) For each completion of Y i&persistently &-categorical. 
We emphasize that, for countable languages, the word ‘persitently’ becomes 
vacuous. Summarizing this discussion, we have: 

Corollary 1. Q.9) is Boo&an if and only if .$ satisfies the four cortdition (a,), (az), 

(br), and (bz). 

The preservation theorems previously citl;d also yield the following reformulation 
of (a) as a strong form of model-completeness. 

(a’) Every homomorphism from one model of Y- into another is an elementary 
embedding. 

From this point of view, (al) says that (a’) minus the word ‘elementary’ holds, 
and (a2) reinstates the omitted word. 

Proof of Theorem 1. Assume that B’(Y) is Boolean. In accordance with our 
discussion in Section 1, we represent f;(Y\ as the topos of sheaves on the site (V, J’), 
where J’ is included in the double negation topology. Our first objective is to infer 
that J’ coincides with the double negation topology. We begin with a general fact 
about the double-negation topologies; it is probably folklore, but we give a proof 
since we have not seen one in the literature. 

Lemma 3.1. Let 3 be any topos and let j be a topology in .9 such that j I 11. Then 
the topoi of double-negation sheaves in 3 and in shj(.S) are equivalent. 

Proof. In the diagram 

f 
sh,,(shj(.~))~shj(.,)_,;FI 

where 11 is the double-negation topology in shj(*S), the composite fg of the two 
inclusions, being an inclusion, is, by Proposition 4.15 of [5], equivalent to the 
inclusion of shk( ,iF) in 3, where k is some topology in 3, We must show that k is the 
double-negation topology. Half of this is easy, in view of the following characteriza- 
tion of the double-negation topology, which is essentially Proposition 5.18 of [S]: A 
topology is smaller than the double-negation topology if and only if 0 is not dense in 
any non-zero object, i.e. if and only if the associated sheaf functor sends non-zero 
objects to non-zero objects. Now, by two applications of this criterion, a non-zero 
object of 9 goes, under f *, to a non-zero object of sh,(.;F), which in turn goes, 
under g*, to a non-zero object of sh,,(Shj( CT)) z sh@). Another application of 
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the criterion yields that k 11. To prove the reverse inequality, we consider an 
arbitrary subobject A of an arbitrary object B in 3, and we prove that 1-A C k(A). 
Pulling back from B to 1~4, we may assume, without loss of generality, that A c;B 

is 1 l-dense, and we must show that it is also k-dense, i.e. that g*f * sends it to an 
isomorphism. This means, in view of the definition of g, that we must show that 
f*A &f *B is lo-dense in shj(.Q). So we consider an arbitrary subobject of f *B 
disjoint from f *A and show that it is 0. This arbitrary subobject is f *CGf*B for 
some CGB in .F (namely, the C whose classifying map is B+J2j G 52&, where 
& =f,&- and the map B--+f*& comes, via adjointness, from the classifying map 
f *B--G ,- of the given subobject). Disjointness of f *C from f *A means, since f * 
preserves intersections, that f *(A f3 C) = 0. But jc 11 so, by our criterion for 
topologies smaller than 17, we infer that A n C = 0. As A is 1 l-dense in B, we have 
C= 0, so f *C= 0, as required. This completes the proof of Lemma 1.1. 

Lemma 1.2. Let If and j be as in the preceding lemma. If shj( 3) is Boolean, then 

J = 11, 

Proof. If sh,(.F) is Boolean, then it is its own double-negation sheaf subtopos. By 
Lemma 1.1, shj( c/) and sh, -( 3) are equivalent (as subt:;poi of A?, by the proof of 
Lemma 1.1). Therefore, j = 11, as required. 

We return to the proof of Theorem 1 and apply Lemma 1.2 with .g being the 
topos of presheaves on ti ’ and j being the topology in 1~ determined by the topology 
J’ on 6 ‘. Then shj(.F) = +J-) is Boolean, SO j= 11, which means that J’ is the 
double-negation toplogy on ‘6 ‘. 

Consider now an arbitrary model M of .ir (in the topos .‘I of sets) and an arbitrary 
tuple a of elements of A4. Fix a list x of variables, of the same length as a, and let Q, 
be the set of all geometric formulas e(x), with free variables among X, that are not 
true of a in M, 

The morphisms of ‘6 ’ 

1X-Y l#mx=Yl: {Xl@(x))-‘(Y Itrue), (1) 

for @E @, do not Y-cover ( y 1 true}, for, if they did, there would )- _ finitely many 
#, E @ such that 

VY [trcre-+ v; W@;(x)Ax=y)], 
i.e. 

VY v @i(Y), 
is provable in J-, hence true in M. But this contradicts the definition of @. 

Since J’ is the double-negation topology, the ::ollection of morphisms (I) is not a 

-1 l-cover of ( y ] lrrre), so we can find a morphism in / ’ 
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~=k-Y/8(zY~l~ {zIW(z)p{YI~~e) 
such that no morphism into { y 1 true} factors through a and also through one of the 
morphisms (I). Now e(.z, y) is consistent with l F, by the observation at the end of 
Section 1. We assert that, for @E 9, e(z, y)l\@(y) is not consistent with .K 

To prove this assertion, suppose it were false for a certain Cp E @ and consider the 
morphism 

It is easy to check that it factors through at, via 

[V,W”ZIV=ZAB(V,W)A~(W)]: {~,~~~(V,W)A#(W)}~{Z~Y(Z)}, 

and factors through the morphism (1) associated with Q), via 

b, Wwx IX= WA&v, w)A@(w)]: {v, w j&v, w)A@(w)) -{x l@(x)}. 

This contradicts the choice of a, so the assertion is proved. 
We have thus found a geometric formula, 32 O(z, y), henceforth abbreviated as 

v(y), which is consistent with .F and Aprovably implies l@(y) for every (li E @. 
Recall that @ consisted of the geometric formulas not satisfied by a specific tuple u 
in a specific model A4 of .E Clearly, y(a) must hold in M, as otherwise y(x) would be 
in Q, and would therefore be inconsistent with itself and ,% Thus we have, for any Q 
and M as above, a geometric formula v(x), true of o in M, that Z-provably implies 
every negated-geometric formula true of a in M. 

We are now ready to prove assertion (a) of the theorem, by induction on 
formulas. Since (a) refers to classical provability and since the class of geometric 
formulas contains the atomic formulas and is closed under conjunction, 
disjunction, and existential quantification, the only point requiring proof is that the 
negation of a geometric formula is X-provably equivalent to a geometric formula. 
So let G(x) be any geometric formula, and let Y be the collection of all geometric 
formulas w(x), with the same free variables, that X-provably imply l@(x). Suppose, 
toward a contradiction, that in some model A-4 of .P there were elements a satisfying 
l@(a) and simultaneously satisfying -ly(@ for all v(x) E Y. By what we proved 
above, there is a geometric formula v(x), satisfied by u, and .;/Lprovably implying 
y@(x). By the latter, v(x) E Y, but then iv(a) holds, a contradiction. This contradic- 
tion shows that the set of formulas 

is inconsistent with .;/. By the compactness theorem, a finite subset, say 

is inconsistent with .% This means that l@(x) .6provably implies the geometric 
formula V,“‘, w;(x); the converse implication also holds because each v,(x) is in Y. 
This completes the proof of (a). 
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Our eariier construction of the formulas r(x) yields, in view of (a), the following 
fact. For any elements a in any model M’ of .& there is a formula y(x), satisfied by a 
that ./-provably implies every formula satisfied by u. In other words, the type 
realized by G is principal. Since every n-type (=ultrafilter in the Lindenbaum algebra 
of . &provable-equivalence classes of formulas with free variables among x1, . . . , x,) 

is realized in some model of F, every n-type is principal. But this means that the 
Lindenbaum algebra is finite, so (b) holds. This completes the proof of the ‘only if’ 
part of Theorem 1. 

To prove the ‘if’ part, let .Y- be a geometric theory satisfying (a) and (b). To show 
that C( I) is Boolean, we show that the topology J’on Vcoincides with the double- 

ation topology. That J’ is included in the double-negation topology was already 
erved, for arbitrary .& in Section 1. To prove the reverse inclusion, consider any 
-covering, say the family 

k”Y Ie,(X,,Y)l: (x, lW,W{Y IV(Y)} (2) 

where i ranges over some index set I. We shall show that it is also a J’xovering. 
By (b), there are, up to ./--provable equivalence, only finitely many formulas of 

the form 

Z/x, 0,(x,, y), with iE I. (3 

Fix a finite set I& / such that each formula (3) is .Gprovably equivalent to one with 
in IO. We shall show that the morphisms (2) for iE IO have the property required in 
the definition of J’ (or J), i.e. that .i’ proves 

VY (W(Y) -+ v, /,, 2x, 4(x,, Y))* (4) 

To show this, which will complete the proof, we assume it is false and derive a 

cent radiction. So assume that (4) is not /-provable. Thus 

is consicjtent with .f-. By (a), find a geometric formula q(y) %provably equivalent to 

(5), and consider the morphism 

WY lw~z=YJ: (21 q(z)}-+{ yl w(y)}. (6) 

Since the family (2) is a ii-covering, there must be a morphism, say 

[b-YY/Y(otY)J: b4-wl+{Y~wo}, 0 

at factors through both (6) and one of the morphisms (2), as in the diagram. 
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We pointed out, at the end of Section 1, that y(o, y) must be consistent with Y’ To 
complete the proof, we shall derive, in f, two contradictory consequences from 

riv, Y)* 
Working in -“r, assume y(v, y). By the commutativity of the bottom triangle, we 

have 

and, in particular, 2”i Bi(Xi, y). By our choice of 10, we also have 

Therefore lq(y). On the other hand, by commutativity of the top triangle, we have 

which implies q(y). This contradiction completes the proof of Theorem 1, 

It is useful, for applications in the next section, to observe that the preceding 
work applies to many-sorted theories. The only changes needed are, first, the 
insertion of requirements that the sorts of the variables and elements used in the 
proof match properly, and, second, the remarks that countability for many-sorted 
languages includes countability of the set of sorts and countability of a many-sorted 
structure means countability of the union of all the domains. 

We close this section with a collection of examples showing that the conditions in 
Corollary 1 are independent. 

Example 1. Let L, be a O-sorted (i.e. propositional) language with just one 
(necessarily 0-ary) relation symbol P (a propositionai variable). Let .J be the theory 
with no axioms. Then conditions (a2) and (b) are satisfied, but (aI) fails. The 
classifying topos is the Sierpinski topos 15, Example 4.37(ii)]. 

Example 2. Let L be the l-sorted language with a single binary relation symbol. Let 
.F be the theory of dense linear orderings. Then (al) holds, as the negations of x~y 
and of x=y are equivalent to x=yvy<x and to xCyvy Cx respectively. (b,) holds, 
as there are precisely five completions, obtained by specifying which =ndpoints exist 
and, if both exist, whether they are equal. It is well known that these completions 
are No-categorical, so (bz) holds. But (a2) fails, since the formula Vy (.xCyVx=y), 
asserting that x is a left endpoint, is not preserved by embeddings and is therefore 
not .Fprovably equivalent to an existential formAa. If .d is the category of finite 
pointed linearly ordered sets and strictly order-preserving maps preserving the 
distinguished points, and if .#’ is the subcategory with the same objects but only 
those morphisms that preserve endpoints, then the methods of [6] show that the 
classifying topos of r is the topos of sheaves on .PP with respect to the topology 
generated by coverings that consist of a single morphism in ~9. 

For the remaining two examples, we shall need a process, sometimes called 
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Morleyization, for making all formulas equivalent to atomic ones by adding new 
predicate symbols. The idea is that, beginning with a theory . hi in a language LO, one 

adds, for each list x of n variables and each formula G(X) with free variables among 

X, a new n-ary predicate symbol PX, O(Xj and a new axiom b”x (PX,6cXj(~) c* e(x)). In 

this form, the process involves axioms that are not geometric sequents; since we 
want geometric theories we modify the axioms as follows. For simplicity we write 
t/x (cP+/?) instead of the two geometric sequents VX (a-+b) and VX (/?-+cr). With 
this convention, the new axioms are 

Vx (Px,,,,,(x)++@(x)) for atomic 4th 

a similar clause for V, 

(Tht universal quantifier and other connectives are to be treated as defined 
symbols.) An easy induction on formulas @ shows that I?x (yX.,&)~@(x)) follows 

from t hesc axioms. Clearly, the theory obtained by Morleyization of .&, always 

satisfies condition (a) of Theorem I, and it satisfies (bt) or (b2) if and only if .;/o 

does. Note also that the Morleyization of JO is always geometric, even if .&, is not, 

Gnce each axiom (r of /, can be replaced by P,. 

ExalPopIe 3. let Lo be a l-sorted language without nonlogical symbols. Let .& have 
IW axioms. This theory, pure equality theory, has infinitely many completions 

(cpecifying a finite cardinality for the universe or saying that is infinite), all of which 

XC &categorical. Therefore, the Morleyization satisfies (a) and (bz) but not (b,). 

I:nample 4. Let Q) be any complete countable first-order theory that is not Ho- 

c2trgoric 71, for instance the theory of the natural numbers with the successor 

nction. Its Morleyization satisfies (a) and (b,) but not (bz). 

[2], w work with the classifying topoi of universal geometric theories, i.e. 

or& in whose axioms b’x (@VW) the geometric formulas @ and I(/ contain no 
tificr$. The following corollary of Theorem 1 tells us that these clasifying 

are practical ly never Boolean. 

C’oroliarv 2. The classifying topos A of a universal geometric theory .I- is Boolean if 
is the theory of a finite coliection (M1, . . . , M,) of finite models such 

!, J-w I f _;, no homomorphism from M, into M, exists. 
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For i#j, there must be an atomic sentence true in .A4i but false in Mj, because 
otherwise we could, thanks to the existence of enough names, define a homo- 
morphism from Mi to Mj by sending the denotation in A!; of any closed term to the 
denotation in Mj of the same term. If we fix i and let j vary, the conjunction ai of 
these atomic sentences will be true in A& and false in all the other A$. 

t Lel 

(a) 
w 
w 
(a 
69 

Y’ be the theory whose axioms are: 
true-, Vy!, 6i, 

di A CSj --*false, for i #j, 
Si-+a, for a an atomic sentence true in Mi, 
Si/\p+ false, for /I an atomic sentence false in A& 
Vx (true-+ VtEN (x= t)), 

Proof. Suppose first that the universal geometric theory Y is the theory of 

{M 1, . . . , M,), with the A4i as in the statement of the corollary. Observe that since the 
isomorpliism class of a finite structure is an elementary class, every model of fl is 
isomorphic to one of the A&. In particular, every substructure of A$, being a model 
of Y because Y is universal, must be among the Mi; the assumption about non- 
existence of homomorphisms then requires the substructure to be Mj itself. Thus, in 
each Mj, there are no proper substructures, so every element is the denotation of a 
closed term. This conclusion, to which we refer as the existence of enough names, 
will be used repeatedly in what follows. Observe that it implies that the only homo- 
morphism from Mi to itself is the identity. 

where N is a finite set of closed terms large enough to contain a name for each 
element of each Mi. It is obvious that each A4i is a model of .K We shall prove that 
every model of .Y’ is isomorphic to one of the A& so that ,Y’ is equivalent to ,“‘/. 

In fact, we shall prove somewhat more, namely that for any model 1M of .V in any 
topos 2, there exists a partition of 1 into open sub-objects U,, . . . , V, in .;t such that, 
over Ui, A4 is isomorphic to A&. (More precisely, if Z/Ui f, 32 Y are the 
obvious geometric morphisms then f *A&f *p*A&) To see this, let 1M be given and 
define Ui to be the truth value of 6i; this defines a partition of 1 because of axioms 
(a) and (b) of Y’. For the rest of the argument, we fix an i and work in cP-/Ui, where 
1M satisfies 6i. By axioms (c) and (d), any atomic sentence true (resp. false) in A$ is 
also true (resp. false) in IM. This means, since there are enough names, that we can 
embed Mi into A4 by sending the value in A& of any closed term to the value in A! of 
the same closed term. This embedding is an isomorphism because M satisfies 
axiom (e). 

This description of the Smodels of .“7’ (which we now know to be equivalent to 
.F), along with the observation that a homomorphism between two such models can 
exist only when the associated partitions are the same (because the 6; are positive 
sentences) and must then be the obvious isomorphism (induced by the isomorphisms 
to the Mi, because there are enough names), tells us that the category of .J/-models of 
.Y is equivalent to the discrete category of partitions of 1 into n labeled pieces in 3. 
The classifying topos for such partitions is clearly Y/n, which is Boolean. 

To prove the converse, we assume that .r is countable. This assumption involves 
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no loss of generality, for the hypothesis that 8(Y) is Boolean, when expressed as (a) 
and (b) of Theorem 1, is clearly preserved when we pass to any Boolean extension of 
the universe, e.g. an extension in which .F is countable, and the desired conclusion is 
clearly preserved when we return to the original universe. 

So let .P be a countable universal geometric theory satisfying the conditions in 
Theorem 1 and thus also the conditions k Corollary 1. 

Consider an arbitrary countable model M of A The substructure consisting of 
denotations of closed terms is a model of ,F (as Y is universal), hence an elementary 
substructure of M (as .F is model-complete), hence isomorphic to M (as all 
completions of .f are NO-categorical). We infer that every element of A4 is the 
denotation of a closed term, since this is the case for the substructure that we have 
seen is isomorphic to M. If M were infinite, then we would obtain a contradiction 
by applying the preceding discussion to a countable proper elementary extension of 
AL So all models of Y are finite. 

; can have only finitely many non-isomorphic models, because non-isomorphic 
finite models are not elementarily equivalent and .P has only finitely many 
completions. Finally, any homomorphism between models of .F is an elementary 
embedding (by (a’)) and therefore an isomorphism (by finiteness). This completes 
the proof of Corollary 2. 

Notice that Example 1 above exhibits a theory whose classifying topos fails to be 
Boolean despite the fact that the theory has only finitely many models all of which 
are finite. The conditions in Corollary 2 are not satisfied because the mode1 in which 
P is false has a (vacuous) homomorphism to the one in which P is true. 

3, Coherent Boolean topoi 

Using Theorem I, we shall obtain a rather complete description of coherent 
Boolean topoi. Before stating this description, Theorem 2 below, we recall a few 
definitions and introduce one new definition. 

Coherent topoi can be defined in two equivalent ways. First, they are the 
classifying topoi of geometric theories. (Recall that all of our theories are finitary.) 
Second, they are the topoi of sheaves on sites where finite limits exist and every 
covering sieve has a finite subset that generates a covering sieve. For the equivalence 
of these two definitions, see [5, $7.41; in one direction the proof uses the description 
of I;( 1 ) as the topos of sheaves on the site (‘L, J) defined in Section 1. 

Atomic topoi [ 1 J are the topoi of sheaves on atomic sites, i.e. sites whose covering 
s&es are precisely all the nonempty sieves. These topoi are characterized [l] by the 
property that the ‘constant sheaf’ functor from the topos of sets is logical. Note 

an atomic site need not have finite limits, we cannot conclude that all 
oi are coherent. In fact, a simple counter-example is obtained by taking 
lying category of the) atomic site to be the monoid of one-to-one 

ctic9ns from natural numbers to natural numbers. 
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Recall that the coproduct of two topoi, in the sense of geometric morphisms, is 
their product as categories. If the two topoi are given as the topoi of sheaves over 
two sites, then their coproduct is the topos of sheaves on the disjoint union of the 
two sites (with the obvious topology). 

We define a topological group G to be coherent if, for every open subgroup H, 
the number of double cosets HgH, with g E G, is finite. 

Theorem 2. For any topos 8, the following are equivalent. 
(i) 8 is coherent and atomic. 

(ii) 8 is coherent and Boolean. 
(iii) B is the classifying topos of a theory .T with the properties in Theorem 1. 

(iv) 8 is the coproduct of finitely many topoi each of which is the topos of 
continuous G-sets for some coherent topological group G. 

Proof. Theorem 1 and the first definition of coherent topoi immediately yield that 
(ii) implies (iii). Also, (i) implies (ii) trivially, since all atomic topoi are Boolean. To 
complete the proof, we show that (iii) implies (iv) and that (iv) implies (i); in fact, 
our proof of the former also establishes directly that (iii) implies (i) and thus 
establishes the equivalence of (i), (ii), and (iii) without reference to the more explicit 
characterization (iv). 1 

We begin with the proof that (iv) implies (i). Since the desired conclusion, (i), is 
preserved by coproducts, we asume, without loss of generality, that 6’ is the topos of 
continuous G-sets for a coherent topological group G. That cf“ is atomic is well 
known and follows (without any need for the coherence of G) either from the 
observation that its ‘constant sheaf’ functor, which gives each set the trivial action 
of G, is logical or from the equally easy observation that the transitive continuous 
G-sets, G/H for H an open subgroup of G, form a set of generators for A and that 
the topology induced by the canonical topology of cf’ makes the full subcategory .d 
of transitive continuous G-sets an atomic site (because every G-equivariant map 
from G/H to G/K is surjective). It remains, therefore, to prove that cf’ is coherent. 
To do this, we shall use a slightly larger site of definition than *d, because .d is 
unlikely to have finite limits. Let d be the full subcategory of (5’ consisting of the 
objects that contain only finitely many G-orbits, i.e. the closure of ,d under finite 
coproducts. It is easy to see that any covering of an object of 4’ has a finite 
subcovering; indeed, if the object consists of n orbits, then the subcovering can 
always be taken to consist of at most n maps, one to cover each orbit. Since ,d 
includes ,o/, it serves as a site of definition for 6, and to prove the coherence of (5’ it 
suffices to check that .8 is closed under finite limits in (5. But .# is obviously closed 
under subobjects and obviously contains 1, so we need only check closure under 
binary products. Furthermore, since binary products distribute over coproducts, we 

’ In response to our announcement of the equivalence of (i) and (ii), J.M.E. Hyland and M. Barr 

provided different, purely topos-theoretic proofs of it. 
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need only check that (G/HI) x (G/Hz) is in 3 for all open subgroups HI and Hz of 
G. Taking H to be HlnH2, we observe that G/H maps onto both G/H] and G/Hz 
(by gtl -g&), so we need only check that (G/H) x (G/H) is in ..& But the G-orbits 
in (G/H) x (G/H) correspond bijectively to the H-orbits in G/H (by intersection 
with {H} x (G/H)) which in turn correspond bijectively to the double cosets HgH. 
The assumption that G is coherent thus suffices to complete the proof that 6’ is 
coherent. (The terminology ‘coherent’ for groups is motivated by the fact that this 
property is equivalent to the coherence of the topos of continuous G-sets.) 

We turn to the proof that (iii) implies (iv). Assume (iii), and let J-t, . . . , &, be the 
completions of Lc n is finite by (b,). In the syntactic site (V, J’) described in Section 
1, let ‘6 “ be the full subcategory consisting of those {x (e(x)} for which e(x) is an 
atom in the Lindenbaum algebra of formulas with free variables among x. (For the 
sake of brevity, we confuse a formula with its %-provable-equivalence class.) For 
any object { y ] u/(y)} of ‘6 ‘, we obtain a covering by objects of % V as follows. The 
finiteness ,,f the Lindenbaum algebra (condition (b)) lets us express I&Q as a finite 
disjunction of atoms, say V:!, &(y). By condition (a), we may take each #i to be 
geometric, so each {x l&(x)} is an object of :(; “. These objects clearly cover 
{ y 1 w(y)} via the morphisms [x-y l&(x)l\x=y]. By the comparison lemma [4, 
III. 4.11, the topos (5(./) of sheaves on (x’J’) is also the topos of sheaves on 
(6 “, J”), where J” is the topology on ‘6 W induced by J’. For each atom e(x), the 
formulas IF(X) that it ILprovably implies constitute a complete type, and the 
sentences that it Jprovably implies therefore constitute one of the completions .fk 
of j-. This . &. is the unique completion of .I- with which e(x) is consistent. If there is 
a morphism [x-y 10(x, y)] in ti ” from {x I@(x)} to { y / w(y)), then, since 0(x, y) .i;- 
provably implies e(x) and u/(y), all three of these formulas are consistent with the 
same compl::tion of J. Thus, f, ” is the disjoint union of n full subcategories ‘Y.;, 
each consisting of the (x 1 e(x)) where #(x) is consistent with a particular .& It 
follows that C( is the coproduct of the topoi of sheaves on these components %l(for 
the induced topologies). These components are just the sites (I: “, J”) associated to 
the theories ./-A, so we assume, without loss of generality, that 1 i itself is complete, 
i.e. that II= 1. 

In / “, each morphism [x-y I&x, y)] : (x 1 @(x)} -+ { y I w(y)) is a covering. To see 
this, we note that the consistent (with I) formula e(x) Y-provably implies I/y 
(I)(x, y)A w( y)), by definition of morphism. So Z/x t9(x, y) is ./-consistent with w(y). 
But w(y), being at atom, /-provably implies everything /-consistent with it, so 
I,U( y) --+3x 8(x, y) is .i-provable, as required. (Note that this shows that 6 is atomic.) 

TO construct a group G as in (iv), we let M be a model of .I- with the following 
homogeneity property (for all n): If a and b are two n-tuples from M that satisfy 
exactly the same formulas (equivalently: that satisfy the same atom of the Linden- 
baum algebra for n variables) then M has an automorphism sending II to b. Such a 
model exists; if 1. is countable its unique countable model will do, and in any case a 
special model will do [3, Theorem 5.1.17). Let G be the automorphism group of M, 

and kt the topology of C be defined by declaring a basis of neighborhoods of the 
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identity e to consist of the subgroups 

H4= {g E G 1g fixes each element of a) 

for finite tuples a from M. 
Since every open subgroup includes some Ho, the objects G/H, generate the topos 

9 of continuous G-sets. We shall show that 8 and .P are equivalent by showing that 
the sites of definition, (V, J”) for f and the full subcategory .d of objects G/H, for 
3, are equivalent. Since all morphisms in .f between objects of .d are epic, ,d is an 
atomic site. Since (V; “, J”) is also an atomic site, we need only check that .d and ‘6 ” 
are equivalent as categories. TO do this, we define a functor F sending an arbitrary 
object {X 1 e(x)} of r, ” to G/H,, where a is some (selected) tuple in M satisfying 

#J(x)* If 1x9 Ie(x,Y)l l ~&ww-qY IW(Y)) is a morphism in % ’ and if a and t, 
are the selected solutions of e(x) and w(y), then F takes this morphism to the map 
of G-sets, a : G/H,-* G/Hb defined as follows. From the definition of morphism in 
6 ” and the fact that A4 is a model of .I-, it follows that there is a unique B’ in M 
satisfying @a, b’) and therefore also v(H). From the homogeneity property of M, it 
follows that there exists gE G mapping b to b’. We then have gHbg-’ = HRcb,= Hbp 
and, because b’ is definable from a by 6, H, c Hb#. We define a! by a(qH,) = qgHh 
and leave to the reader the straightforward verification that this is well defined. We 
also leave to the reader the equally straightforward but more tedious verification 
that the F we have defined is a functor. To see that it is faithful, suppose that two 
morphisms, given by formulas 8’ and e2, lead to the same cy, and let 6’ and b2, g* 
and g2 be the corresponding b’ and g as in the preceding discussion. Since a(H,) = 
g*Hb= g2Hb, we infer that g’ = g2. h for some h E Hb, which implies 6’ = li2, so we 
may revert to the notation 6’. Now we have both #(a, b’) and 02(a, 6’) holding in M, 
so 3y (01(x,y)l\02(x, y)) is satisfied by a, hence Xconsistent with e(x), hence .I- 
provable from e(x) as e(x) is an atom. It immediately follows that 0’ and 0’ define 
the same morphism. Thus, F is faithful. 

To see that F is full, let any G-equivariant map CT : G/H@ --) G/Hb be given. We 
attempt to reverse the steps in the definition of F in order to find a morphism 
[x-y I&x, y)] that F maps to (Y. Choose g so that gHb= cr(H,); then equivariance 
yields qgHB = a(qH,). Choose b’ = g(b). Choose 0(x, y) to be an atom satisfied in A4 
by a, b’; this is possible since the Lindenbaum algebra is finite. We need only check 
that 8 defines a morphism from {x Ids to ( y I w(y)}, i.e. that 

vx (@w -+ YY m, Y)), 

vx vy vz (0(x, yW(x, z)-+y = 2) 

are .yLprovable. The first two are easy because, in each of these, the antececlent is an 
atom, so it suffices to show that the antecedent and consequent are Y-consistent 
with each other, and the consistency is clear since D and 6’ satisfy these clauses. The 
third sequent is a bit harder, but we note that it suffices to prove that it holds in M 
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(since .I- is complletej, and for this it suffices to prove that, in M 

vy vi (e(a,y)Ae(Q, Z)-+Y=Z). (8) 

Indeed, any x satisfying 6(x, ~)/\O(X, I) would satisfy G(x) and would therefore, as 
q(x) is an atom, satisfy exactly the same formulas as a. To establish (S),, suppose 
that there were a b”, distinct from b’, satisfying O(O, b”). Since the tuples (0, 6’) and 
(a, b”) satisfy the same atom 8, there is an automorphism ZE G sending the first to 
the second. Thus, ZE Ifa but z@ &. Since ZEH,, z stabilizes the element 
a(&) = gHb in G/I&,. This means z E g&g -* = HbP, a contradiction. This completes 
the proof that F is full. 

Finally, to see that F is essentially surjective on objects, consider any object G/H, 
of .r/‘. Let @b(x) be an atom satisfied in M by c, and let (I be the selected solution of 
G(X), SO F takes {X i@(x)) to G/H,. The homogeneity property of M provides a 
g E G that sends a to c, so Hc= gH,g -I. It is easy t? check that G/H, is isomorphic 
to G/H, by the map sencing qH, to qgH,. This completes the proof that F is an 
equivalence and thus also $he proof that ff is equivalent to the topos of continuous 
G-sets. 

To complete the proof of Theorem 2, we verify that G is coherent. Since each 
open subgroup includes H,, for some finite sequence a in M, we need only check 
that, for each fixed n-tuple a, the number of double cosets H,gH, is finite. We 
assert that such a double coset is completely determined by an atom @(x, u) (in 2n 
variables) satisfied in M by a, g(u). ThiF will finish the proof since there are only 
Finitely many such atoms. To prove the assertion, we consider two elements 
gI,g+G such that ~,g@) and o,gz(cr) satisfy the same atom. Then there is an 
automorphism h E G sending the first of these sequences to the second. Since it fixes 
a, h belongs to H,. Also, the automorphism h’=gl ‘h -‘gz fixes a, hence belongs to 
H,. But .yz = hg, h’, so l-lag, Ha = HagzH,. This completes the proof of Theorem 2. 
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