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Let < be a finitary geometric theory and + its classifying topos. We prove that « is Boolean if
and oaly if (1) every first-order formula in the language of . is /-provably equivalent to a
geometric formula and (2) for any finite fist of variables, x, there are, up to 7-provable equi-
valence, only finitely many foemulas, in the language of /, with free variables among x. We use
this characterization to show that, when ¢ is Boolean, it is an atomic topos and can be viewed as a
finite coproduct of topot of continuous G-sets for topological groups G satisfying a certain
finitengss condition.
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The primary purpose of the research reported here is 10 specify the model-
theoretic properties that cause certain (geometric) theories, e.g. dense linear orders
without endpoints, to have Boolean classifying topoi while other closely related
theories, ¢.g. dense lincar orders, do not. The specification, given in Theorem |
below, involves model completeness, a positivity requirement, a weak form of
completeness, and a variant of Xg-categoricity. These conditions on the theory turn
out t0 be so restrictive that they permit a quite detailed analysis of the classifying
topos. The results of this analysis, summarized in Theorem 2, amount to a structure
theory for coherent Boolean topoi. In particular, they imply that all such topoi are
atomic.
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1. Preliminaries

Throughout this paper, ‘topos’ always means Grothendieck topos. The first-
crder languages, formulas, and theories that we consider are always assumed to be
t'niary. If ./ is a theory, then ‘./-provable’, ‘consistent with ./’, and related
concepts are always to be understood as referring to classical logic. Thus, although
ine classifying topos of .7 is defined in terms of intuitionistic models of ./ in various
topoi, our criterion for its Booleanness is expressed in terms of the traditioral
classical model theory of .7. We temporarily assume, for notational simplicity, that
we are dealing with a single-sorted language. After the proof of Theorem 1, we
indicate how our arguments can be applied to multi-sorted theories.

The geometric formulas of a first-order language L with equality are those
obtainable from atomic formulas by fiuite conjunction {including the empty ccn-
junction, true), finite disjunction (including the empty disjunction, false), and
existential quantification. Geometric formulas can be characterized model-
theoretically as the formulas whose satisfaction is preserved by arbitrary (not
necessarily surjective) homomorphisms of L-structures; see [3, §5.2). Topos-
theoretically, their key property is that, if M is an L-structure in a topos ¢, if
S # =& is a geometric morphism, and if ¢ is a geometric formula, then the truth
values of ¢ in M and f*M satisfy |@| joas=S*|@|a, i.€. [* preserves the truth value
of ¢.

A peometric sequent is a sentence of the form Vx (¢p—y), where ¢ and y are
geowztric formulas and cvery variable free in @ or w occurs in the list x. (We
systomatically use boldface lctters like x for finite sequences. ) A geometric theory is
a theory axiomatized by gecmetric sequents. It follows from the preservation of
geometric formulas under geometric morphisms that, if f:./ = ¢ is a geomatric
morphism of topoi and M is a model in ¢ of a geometric theory .7, then f*M is a
model of / in .#, Barr's theorem [5, §7.5) implies that, if one geometric sequent is
deducible from certain others (in classical logic, according to our convention), then
the deduction can be carited out in intuitionistic logic as well. Thus, the geometric
sequents provable in a geometric theory ./~ hold in all models of ./ in arbitrary
topoi.

It 7 is a geometric theory, then there exists a topos «, called the classifying ropos
of 7/, and there exists a model M of .7 in ¢, called the universal model of ./. such
that, for any topos .#, the category of geometric morphisms f:.# = ¢ and natural
transtformations n: f*—g* is equivalent to the category of models of ./ in .» and
homomorphisms, the identity morphism of ¢ corresponding to the model M. Thus,
M has the universal property that every model of ./ in any topos .# can be obtained
(up to isomorphism) as f*M for a unique (up to natural isomorphism) geometric
morphism f:.# — ¢, Of the various constructions of classifying topoi, the one of
Joval and Reyes described in [5, §7.4] will be useful in what follows, so we give an
outline of it.

Given a geometric theory 7, we shall define its syntactic site (+,J); the classifying
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topos will be the topos of sheaves on this site. An object of % is a formal class term
{x |¢(x)} where ¢(x) is a geometric formula whose free variables are among x. We
adopt the convention that a formula or class term is not changed if its bound
variables (including the x in {x |¢(x)}) are renamed subject to the usual precauticans
for avoiding clashes. To define morphisms from {x|¢(x)} to { ylw( Yi}, we may
and do assume that the lists x and y are disjoint; a morphism is then an equivalence
class, with respect to .7-provable equivalence, of geometric formulas 8(x. ») such
that the following geometric sequents are provable in .7 \

Vx Vy (0(x, y)=o(xX)Aw(y)),
Vx (p(x)—dy G(x, y)),
Vx Vy Vz (0(x, Y)ANO(x,2)—>y=2).

(If yis y;,..., y,and zis 2, ..., <,, then Ty is Fy, --- Fy, and y =z is the conjunction
of the n formulas y;=z;,.) The morphism defined by f(x, y) will be cailed
[x~y |0(x, »)i. The composite of [x—y |0(,.‘, »land [y~2 Iﬂ(y, 7)) is defined to be
[x~2 IHy (6(x, »)An(y,2))). It is easy to check that this defines a category ¢. We
make it a site by defining a sieve on { ylw( ¥)} to be J-covering if and only if it
contains a finite family of morphisms

X~y |0:x, M) {xi|2:xD} = { ¥ w(»)}

for which the geometric sequent

vy (w(»)—V, 3x; 6i(xi, )

is provable in .73 it is easy to check that J is a Grothendieck topology. Fina iy,
according to Theorem 7.45 of [5], the topos ¢(.7") of sheaves on the site (¢,J) is a
classifying topos for the theory ./.

Observe that { ylv/( »)} is covered by th: empty sieve if and only if w(p) is
inconsistent with ./, i.e. ./ proves the geometric sequent Vy (y(.v)—false). Such
objects can be deleted from the site without changing the topos of sheaves,
according to [4, 111. 4.1]. More precisely, we let ¢’ be the full sibcategory of ¢
whose objects are {x |¢(x)} for geometric @(x) consistent with .7, and we let J’ be
the topology on %’ induced by J. Then ¢(.7) is also the topos of shcaves on (7", J').
We note for future reference that, since J’-coverings are never empty, J' is included
in the double-negation topology on #’. We also note that, if

=y |0 »): {x|o@}=1y|w(»}

is any morphism of 7’, then 8(x, y) is consistent with .7. This follows immediately
from the facts that ¢(x) is consistent with .7, by definitioa of #”, and that .7 proves
Vx (¢(x)— dy O(x, ), by definition of morphisms.
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2. Theories classified by Boolean topoi

Theorem 1. The classifying topos &(J°) of a geometric theory 7 is Boolean if and
only if both of the following conditions are satisfied.

(@) Every formula in the language of 7 is 7-provably equivalent to a geometric
Sormula.

(b) For every finite list x of variables, there are, up to J-provable equivalence,
only finitely many formulas with free variables among x.

Before proving the theorem, we comment on the conditions (a) and (b). Recall
our convention that ‘.7-provable’ refers to classical logic. The preservation theorems
in [3, §5.2] imply that (a) is equivalent to requiring that every formula is .7-provably
equivalent to a positive formula and to an existential one. The positivity
requirement trivially reduces to

(a;) For each predicate symbol R of L (including equality), there is a positive
Sformula ¢(x) .7-provably equivalent to -~ R(x).

And equivalence of arbitrary formulas to existential formulas means

(ay) .7 is model-complete.

Condition (b) can also be expressed in more familiar terms. First, taking the list x
to be empty, we infer from (b) that there are only finitely many inequivalent
sentences, i.e.

(b)) .7 has only finitely many completions.

Condition (b) for a theory ./ clearly implies the same condition for all the
completions of .7, In the presence of (b,), the converse implication holds as well, for
the ./~provable-equivalence class of a formula ¢ is uniquely determined by the list of
./-provable-equivalence classes of ¢ as .7’ ranges over all completions of 7. Thus,
condition (b) for .7 is equivalent to the conjunction of (b;) with ‘‘all completions of
./ satisfy (b)’’. For countable complete theories, (b) is Ryll-Nardzewski’s critcrion
[3, Theorem 2.3.13] for R,-categoricity (where we include among Ry-categorical
theories the trivial ones whose models are finite). In the case of an uncountable
complete theory, condition (b) still implies Ry-categoricity, since this half of Ryll—
Nardzewski’s theorem does not require countability of the theory. ( ¥,-categoricity
may, of course, be vacuous; the theory need not have any countable models.) We
shall refer to condition (b), for complete theories, as persistent R,-categericity, and
we digress briefly to justify this terminology.

If a complete theory ./ satisfies (b), then it continues {2 .0 so in every Boolean
extension V' ” of the universe V of sets. More precisely the truth value of *‘./
satisfies (b)”’ is 1, and therefore, by our previous reinarks, so is ‘‘./ is Ng-
categorical”’. Thus, the R,-categoricity of .7 persists when we pass to V*. Con-
versely, if .7 remains Xj-categorical in every V' *, then in particular we can choose
4 so that the cardinality of . is collapsed to Xgin V. Then Ryll-Nardzewski’s
theorem, applied in V7 to the countable (in V ?) R,-categorical theory .7, tells us
that 7 satisfies (b) in V ?. But (b) is clearly absolute, so ./ really satisiies (b). This
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shows that (b) is equivalent to the assertion that .7 is R,y-categorical in V¥ for all
.4; hence the terminology ‘persistently R,-categorical’.

With this terminology, we have that (b) is equivalent to the conjunction of (b;)
and

(by) For each completion of . is persistently R-categorical.
We emphasize that, for countable languages, the word ‘persitently’ becomes
vacuous. Summarizing this discussion, we have:

Corollary 1. &(#) is Boolean if and only if .7 satisfies the four condition (a,), (a,),
(b)), and (b,).

The preservation theorems previously citzd also yield the following reformulation
of (a) as a strong form of model-completeness.

(@) Every homomorphism from one model of .7 into another is an elementary
embedding.

From this point of view, (a,) says that (a’) minus the word ‘elementary’ holds,
and (a,) reinstates the omitted word.

Proof of Theorem 1. Assume that &(7) is Boolean. In accordance with our
discussion in Section 1, we represent £(.7 } as the topos of sheaves on the site (¢, J'),
where J' is included in the double negation topology. Our first objective is to infer
that J’ coincides with the double negation topology. We begin with a general fact
about the double-negation topologies; it is probably folklore, but we give a proof
since we have not seen one in the literature.

Lemma i.1. Let .# be any topos and let j be a topology in .# such thatj< —~—. Then
the topoi of double-negation sheaves in  and in sh;(.#) are equivalent.

Proof. In the diagram

sh--(shy(#)) —» shy () =D 7,

where == is the double-negation topology in sh;(.7), the composite fg of the two
inclusions, being an inclusion, is, by Proposition 4.15 of [5], equivalent to the
inclusion of sh,(.#) in .7, where k is some topology in .7, We must show that X is the
double-negation topology. Half of this is easy, in view of the following characteriza-
tion of the double-negation topology, which is essentially Proposition 5.18 of [5]: A
topology is smaller than the double-negation topology if and only if 0 is not dense in
any non-zero object, i.e. if and only if the associated sheaf functor sends non-zero
objects to non-zero objects. Now, by two applications of this criterion, a non-zero
object of .# goes, under f*, to a non-zero object of sh,(.#), which in turn goes,
under g*, to a non-zero object of sh_.(sh;(.#))=sh,(.#). Another application of
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the criterion yields that k< ——. To prove the reverse inequality, we consider an
arbitrary subobject A of an arbitrary object B in .#, and we prove that 74 C k(A4).
Pulling back from B to ~—A, we may assume, without loss of generality, that A< B
is ~—-dense, and we must show that it is also k-dense, i.e. that g*f* sends it to an
isomorphism. This means, in view of the definition of g, that we must show that
f*Acf*B is ~—-dense in sh;(.#). So we cnonsider an arbitrary subobject of f*B
disjoint from f*A and show that it is 0. This arbitrary subobject is f*C< f*B for
some CSB in .# (namely, the C whose classifying map is B—Q,;C Q., where
Q; =/« , and the map B-f,Q , comes, via adjointness, from the classifying map
f*B—Q ,; of the given subobject). Disjointness of f*C from f*4 means, since f*
preserves intersections, that f*(ANC)=0. But j<-- so, by our criterion for
topologies smaller than ——, we infer that ANC=0. As A is ~—-dense in B, we have
C=0, so f*C=0, as required. This completes the proof of Lemma 1.1.

Lemma 1.2. Ler .7 and j be as in the preceding lemma. If sh;(.#) is Boolean, then

j: -,

Proof. If sh;(.#) is Boolean, then it is its own double-nezation sheaf subtopos. By
Lemma 1.1, sh;(.#) and sh__(.#) are equivalent (as subt.poi of .# by the proof of
Lemma 1.1). Therefore, j= -, as required.

We return to the proof of Theorem 1 and apply Lemma 1.2 with .# being the
topos of presheaves cn #“and j being the topology in .# determined by the topology
J"  on ¢’. Then sh;(.#)=4(.7) is Boolean, so j=--, which means that J' is the
double-negation toplogy on +".

Consider now an arbitrary model M of ./ (in the topos .7 of sets) and an arbitrary
tuple a of elements of M. Fix a list x of variables, of the same length as a, and let @

be the set of all geometric formulas ¢(x), with free variables among x, that are not
true of @ in M,

¢ = {p(x) |M=-p(a)}.
The morphisms of #’
[x—y|p@Ax=p]: {x|px)}—{y]|true}, (1)

for ¢ € ¢, do not J'-cover { y Itrue}, for, if they did, there would } . finitely many
¢, € & such that

Vy [true—\, Ix(¢.(x)Ax = p)],

is provable in ./, hence true in M. But this contradicts the definition of @.
Since J' is the double-negation topology, the collection of morphisms (1) is not a
—=-cover of {y ltrue}, so we can find a morphism in #°
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a=[z~y|0z »): {z|w@}—{y|true}

such that no morphism into { y | true} factors through a and also through one of the
morphisms (1). Now 6(z, y) is consistent with .7, by the observation at the end of
Section 1. We assert that, for ¢ € @, 6(z, Y)A@(p) is not consistent with .7,
To prove this assertion, suppose it were false for a certain ¢ € @ and consider the
morphism
[v,w—y|y=wAb(v, WAp(W)]: {v,w|6(v, WAP(W)}—{ Y |true}.

It is easy to check that it factors through a, via
[o,w-~z|v=z/\o(u,w)/\¢(w)]: {v,wle(v,w)A¢(w)}—>{zIw(z)},

and factors through the morphism (1) associated with ¢, via

v, w—~x |x= wAB(v, w)Ap(W)]: {v,w |0(v, w)AP(W)} — {x |¢(x)}.

This contradicts the choice of a, so the assertion is proved.

We have thus found a geometric formula, 7z #(z, y), henceforth abbreviated as
y(»), which is consistent with .7 and .7/-provably implies —¢@(y) for every ¢ € .
Recall that @ consisted of the geometric formulas not satisfied by a specific tuple a
in a specific model M of .7. Clearly, y(a) must hold in M, as otherwise y(x) would be
in @ and would therefore be inconsistent with itself and .7. Thus we have, for any @
and M as above, a geometric formula y(x), true of @ in M, that ./-provably implies
every negated-geometric formula true of @ in M.

We are now ready to prove assertion (a) of the theorem, by induction on
formulas. Since (a) refers to classical provability and since the class of geometric
formulas contains the atomic formulas and is closed under conjunction,
disjunction, and existential quantification, the only point requiring proof is that the
negation of a geometric formula is .7-provably equivalent to a geometric formula.
So let ¢(x) be any geometric formula, and let ¥ be the collection of all geometric
formulas y(x), with the same free variables, that ./-provably imply —¢(x). Suppose,
toward a contradiction, that in some model M of ./ there were elements a satisfying
- ¢(a) and simultaneously satisfying ~w(a) for all y(x)e ¥. By what we proved
above, there is a geometric formula y(x), satisfied by @, and ./-provably implying
-¢(x). By the latter, p(x) € ¥, but then ~y(a) holds, a coniradiction. This contradic-
tion shows that the set of formulas

{~eM}U{~wx) |px) e ¥}

is inconsistent with .7. By the compactness theorem, a finite subset, say

{=o@)}U{~wix) |1=isn}

is inconsistent with .7. This means that —¢(x) .7-provably implies the geometric
formula V., wi(x); the converse implication also holds because each w;(x) is in ¥.
This completes the proof of {a).
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Our earlier construction of the formulas p(x) yields, in view of (a), the following
fact. For any elements @ in any model M of .7, there is a formula y(x), satisfied by @
that /-provably implies every formula satisfied by a. In other words, the type
realized by ¢ is principal. Since every n-type (=ultrafilter in the Lindenbaum aigebra
of .7-provable-equivalence classes of formulas with free variables among x;, ..., x,,)
is realized in some model of 7, every n-type is principal. But this means that the
Lindenbaum algebra is finite, so (b) holds. This completes the proof of the ‘only if’
part of Theorem 1.

To prove the ‘if’ part, let ./ be a geometric theory satisfying (a) and (b). To show
that #( /) is Boolean, we show that the topology J’ on ¥ coincides with the double-
negation topology. That J' is included in the double-negation topology was already
observed, for arbitrary .7, in Section 1. To prove the reverse inclusion, consider any
==-covering, say the family

[x,~y 6,0, M1: {x:]0:x)} = {¥|w(»} @)

where / ranges over some index set /. We shall show that it is also a J'-covering.
By (b), there are, up to ./-provable equivalence, only finitely many formuias of
the form

Ix, 0,(x,y), withiel. 3

Fix a finite set /,C J such that each formula (3) is ./-provably equivalent to cne with
i€ l,. We shall show that the morphisms (2) for i € I, have the property required in
the definition of J' (or J), i.e. that ./ proves

Vy (w(y)— V.., 3%, 0/(x;,p)). 4)

To show this, which will complete the proof, we assume it is false and derive a
contradiction. So assume that (4) is not ./-provable. Thus

w(WAV,, dx; 8i(x;, y) (5)

is consistent with .. By (a), find a geometric formula »(y) ./-provably equivalent to
(5), and consider the morphism

[z~y|n@Az=y: {z|n@}—{ry|w(»}. (6)
Since the family (2) is a = —-covering, there must be a morphism, say

[v=y [y {v]u@)} - {r|v}, (7
that factors through both (6) and one of the morphisms (2), as in the diagram.

[v—z|atv, 2)]

{v]uv)} > {z|n(@)}

{v—x' Blv, %) [v-'y{y(v.y)] [z»-_yly-_—z/\;](z)]

ix, | 0.} {y lwn}

[x,~y]6,(x,»)]
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We pointed out, at the end of Section 1, that y(v, ¥) must be consistent with .7. To
complete the proof, we shall derive, in .7, two contradictory consequences from
o, y).

Working in .7, assume y(v, ¥). By the commutativity of the bottom triangle, we
have

dx; (B(v, w)Abi(xi, ¥))

and, in particular, x; 8;(x;, y). By our choice of /;, we also have
Vier, 3xi 0i(x;, »).

Therefore —n( y). On the other hand, by commutativity of the top triangle, we have
HzZ (a(v, 2Ny =2An(2))

which implies n(y). This contradiction completes the proof of Theorem 1.

It is useful, for applications in the next section, to observe that the preceding
work applies to many-sorted theories. The only changes needed are, first, the
insertion of requirements that the sorts of the variables and elements used in the
proof match properly, and, second, the remarks that countability for many-sorted
languages includes countability of the set of sorts and countability of a many-sorted
structure means countability of the union of ail the domains.

We close this section with a collection of examples showing that the conditions in
Corollary 1 are independent.

Example 1. Let L be a O-sorted (i.e. propositional) language with just one
(necessarily 0-ary) relation symbol P (a propositional vanable). Let ./ be the theory
with no axioms. Then conditions (a,) and (b) are satisfied, but (a;) fails. The
classifying topos is the Sierpinski topos [5, Example 4.37(ii)].

Example 2. Let L be the 1-sorted language with a single binary relation symbol. Let
7 be the theory of dense linear orderings. Then (a,) holds, as the negations of x <y
and of x=_y are equivalent to x=yVy<x and to x< yV y<x respectively. (b,) holds,
as there are precisely five completions, obtained by specifying which =ndpoints exist
and, if both exist, whether they are equal. It is well known that these completions
are R,-categorical, so (b,) holds. But (a,) fails, since the formula Vy (x<yvx=y),
asserting that x is a left endpoint, is not preserved by embeddings and is therefore
not .7-provably equivalent to an existential form.la. If & is the category of finite
pointed linearly ordered sets and strictly order-preserving maps preserving the
distinguished points, and if .# is the subcategory with the same objects but only
those morphisms that preserve endpoints, then the methods of [6] show that the
classifying topos of .7 is the topos of sheaves on ./ °P with respect to the topology
generated by coverings that consist of a single morphism in 4.

For the remaining two examples, we shall need a process, sometimes called
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Morleyization, for making all formulas equivalent to atomic ones by adding new
predicate symbols. The idea is that, beginning with a theory .7 in a language L, one
adds, for each list x of n variables and each formula ¢(x) with free variables among
X, a new n-ary predicate symbol Py ,,, and a new axiom bx (P, 4x)(X) < ¢(x)). In
this form, the process involves axioms that are not geometric sequents; since we
want geometric theories we modify the axioms as follows. For simplicity we write
Vx (a+ B) instead of the two geometric sequents Vx (@—f) and Vx (8—a). With
this convention, the new axioms are

Vx (P, yx(X)<@(x)) for atomic ¢,

VX (P p0nupx(X) € Py oy (XA Py (X)),
a similar clause for v,

Vi (Pyav oo () TV Py s ix, 11X, V),
Vx (true— Py 4 (X)V Py _px)(X)),

VX (Py o (X)A Py, - px(X) = false).

(The universal quantifier and other connectives are to be treated as defined
symbols.) An easy induction on formulas ¢ shows that Vx (P, 4 (¥) < ¢(x)) follows
from these axioms. Clearly, the theory obtained by Morleyization of .7, always
satisfies condition (a) of Theorem I, and it satisfies (b,) or (b,) if and only if .7,
does. Note also that the Morleyization of ./, is always geometric, even if .7, is not,
since each axiom a of /|, can be replaced by P,.

Examiple 3. Let L, be a 1-sorted language without nonlogical symbols. Let ./, have
no axioms. This theory, pure equality theory, has infinitely many completions
(specifying a finite cardinality for the universe or saying that is infinite), all of which
are R,-categorical. Therefore, the Morleyization satisfies (a) and (b,) but not (b)).

Example 4. Let /, be any complete countable first-order theory that is not R,-
categoric 1, for instance the theory of the natural numbers with the successor
function. Its Morleyization satisfies (a) and (b;) but not (b,).

In [2], we work with the classifying topoi of universal geometric theories, i.e.
theories in whose axioms Vx (¢—y) the geometric formulas ¢ and w con‘ain no

quantificrs. The following corollary of Theorem 1 tells us that these cla'sifying
topoi are practically never Boolean.

Corollary 2. The classifying topos ¢ of a universal geometric theory .7 is Boolean if
and only if / is the theory of a finite collection {M,, ..., M,} of finite models such
that, for 1%+, no homomorphism from M, into M; exists.
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Proof. Suppose first that the universal geometric theory .7 is the theory of
{M,, ..., M,}, with the M; as in the statement of the corollary. Observe that since the
isomorpliism class of a finite structure is an elementary class, every model of .7 is
isomorphic to one of the M;. In particular, every substructure of M;, being a model
of 7 because J is universal, must be among the M;; the assumption about non-
existence of homomorphisms then requires the substructure to be M; itself. Thus, in
each M;, there are no proper substructures, so every element is the denotation of a
closed term. This conclusion, to which we refer as the existence of enough names,
will be used repeatedly in what follows. Observe that it implies that the only homo-
morphism from M, to itself is the identity.

For i#j, there must be an atomic sentence true in M; but false in M;, because
otherwise we could, thanks to the existence of enough names, define a homo-
morphism from M; to M; by sending the denotation in M; of any closed term to the
denotation in M, of the same term. If we fix i and let j vary, the conjunction J; of
these atomic sentences will be true in M; and false in all the other M;.

Let 7' be the theory whose axioms are:

(@) true—= V., 9,

(b) d;AS;— false, for i+,

(¢) d;—a, for a an atomic sentence true in M;,

(d) 6;AB— false, for B an atomic sentence false in M,,

(e) Vx (true=V,.y (x=1)),
where N is a finite set of closed terms large enough to contain a name for each
element of each M;. It is obvious that each M, is a model of .7’. We shall prove that
every model of .7’ is isomorphic to one of the M;, so that .7’ is equivalent to .7.

In fact, we shall prove somewhat more, namely that for any model M of .7’ in any
topos .7, there exists a partition of 1 into open sub-objects U, ..., U,in .# such that,
over U;, M is isomorphic to M;. (More precisely, if JT/U,-_L FP, ¥ are the
obvious geometric morphisms then f*M = f*p*M,.) To see this, let M be given and
define U; to be the truth value of d;; this defines a partition of 1 because of axioms
(a) and (b) of .7". For the rest of the argument, we fix an i/ and work in #/U;, where
M satisfies J;. By axioms (c) and (d), any atomic sentence true (resp. false) in M; is
also true (resp. false) in M. This means, since there are enough names, that we can
embed M; into M by sending the value in M, of any closed term to the value in M of
the same closed term. This embedding is an isomorphism because M satisfies
axiom (e).

This description of the #models of .7’ (which we now know to be equivalent to
.7), along with the observation that a homomorphism between two such models can
exist only when the associated partitions are the same (because the J; are positive
sentences) and must then be the obvious isomorphism (induced by the isomorphisms
to the M;, because there are enough names), tells us that the category of .#-models of
.7 is equivalent to the discrete category of partitions of 1 into » labeled pieces in .7,
The classifying topos for such partitions is clearly .#/n, which is Boolean.

To prove the converse, we assume that .7 is countable. This assumption involves
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no loss of generality, for the hypothesis that £(.7") is Boolean, when expressed as (a)
and (b) of Theorem 1, is clearly preserved when we pass to any Boolean extension of
the universe, e.g. an extension in which .7 is countable, and the desired conclusion is
clearly preserved when we return to the origiral universe.

So let .7 be a countable universal geometric theory satisfying the conditions in
Theorem 1 and thus also the conditions :z Cerollary 1.

Consider an arbitrary countable model M of 7. The substructure consisting of
denotations of closed terms is a model of .7 (as .7 is universal), hence an elementary
substructure of M (as .7 is model-complete), hence isomorphic to M (as all
completions of ./ are XKy-categorical). We infer that every element of M is the
denotation of a closed term, since this is the case for the substructure that we have
seen is isomorphic to M. If M were infinite, then we would obtain a contradiction
by applying the preceding discussion to a countable proper elementary extension of
M. So all models of .7 are finite.

/ can have only finitely many non-isomorphic models, because non-isomorphic
finite models are not elementarily equivalent and ./ has only finitely many
completions. Finally, any homomorphism between models of .7 is an elementary
embedding (by (a")) and therefore an isomorphism (by finiteness). This completes
the proof of Corollary 2.

Notice that Example 1 above exhibits a theory whose classifying topos fails to be
Boolean despite the fact that the theory has only finitely many models al} of which
are finite. The conditions in Corollary 2 are not satisfied because the model in which
P is false has a (vacuous) homomorphism to the one in which P is true.

3. Coherent Boolean topoi

Using Theorem 1, we shall obtain a rather complete description of coherent
Boolean topoi. Before stating this description, Theorem 2 below, we recall a few
definitions and introduce one new definition.

Coherent ropoi can be defined in two equivalent ways. First, they are the
classifying topoi of geometric theories. (Recall that all of our theories are finitary.)
Second, they are the topoi of sheaves on sites where finite limits exist and every
covering sieve has a finite subset that generates a covering sieve. For the equivalence
of these two definitions, see [5, §7.4]; in one direction the proof uses the description
of #( ) as the topos of sheaves on the site (#, J) defined in Section 1.

Atomic topoi [1] are the topoi of sheaves on aromic sites, i.e. sites whose covering
sieves are precisely all the nonempty sieves. These topoi are characterized [1] by the
property that the ‘constant sheaf’ functor from the topos of sets is logical. Note
that, sincc an atomic site need not have finite limits, we cannot conclude that all
atomic topoi are coherent. In fact, a simple counter-example is obtained by taking
the (underlying category of the) atomic site to be the monoid of one-to-one
functions from natural numbers to natural numbers.
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Recall that the coproduct of two topoi, in the sense of geometric morphisms, is
their product as categories. If the two topoi are given as the topoi of sheaves over
two sites, then their coproduct is the topos of sheaves on the disjoint union of the
two sites (with the obvious topology).

We define a topological group G to be coherent if, for every open subgroup H,
the number of double cosets HgH, with ge G, is finite.

Theorem 2. For any topos &, the following are equivalent.
(i) & is coherent and atomic.
(ii) & is coherent and Boolean.
(ili) € is the classifying topos of a theory J with the properties in Theorem 1.
(iv) & is the coproduct of finitely many topoi each of which is the topos of
continuous G-sets for some coherent topological group G.

Proof. Theorem 1 and the first definition of coherent topoi immediately yield that
(ii) implies (iii). Also, (i) implies (ii) trivially, since all atomic topoi are Boolean. To
complete the proof, we show that (iii) implies (iv) and that (iv) implies (i); in fact,
our proof of the former also establishes directly that (iii) implies (i) and thus
establishes the equivalence of (i), (ii), and (iii) without reference to the more explicit
characterization (iv).!

We begin with the proof that (iv) implies (i). Since the desired conclusion, (i), is
preserved by coproducts, we asume, without loss of generality, that & is the topos of
continuous G-sets for a coherent topological group G. That & is atomic is well
known and follows (without any need for the coherence of G) either from the
observation that its ‘constant sheaf’ functor, which gives each set the trivial action
of G, is logical or from the equally easy observation that the transitive continuous
G-sets, G/H for H an open subgroup of G, form a set of generators for ¢ and that
the topology induced by the canonical topology of & makes the full subcategory .«
of transitive continuous G-sets an atomic site (because every G-equivariant map
from G/H to G/K is surjective). It remains, therefore, to prove that & is coherent.
To do this, we shall use a slightly larger site of definition than .o/, because .« is
unlikely to have finite limits. Let # be the full subcategory of & consisting of the
objects that contain only finitely many G-orbits, i.e. the closure of ./ under finite
coproducts. It is easy to see that any covering of an object of # has a finite
subcovering; indeed, if the object consists of n orbits, then the subcovering can
always be taken to consist of at most » maps, one to cover each orbit. Since .»
includes .«/, it serves as a site of definition for &, and to prove the coherence of ¢ it
suffices to check that 4 is closed under finite limits in . But .4 is obviously closed
under subobjects and obviously contains 1, so we need only check closure under
binary products. Furthermore, since binary products distribute over coproducts, we

'n response to our announcement of the equivalence of (i) and (i), J.M.E. Hyland and M. Barr
provided different, pureiy topos-thecoretic proofs of it.
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need only check that (G/H;) X (G/H,) is in .# for all open subgroups H, and H, of
G. Taking H to be HNH,, we observe that G/H maps onto both G/H, and G/H,
(by gH —~ gH,), so we need only check that (G/H) x(G/H) is in .£. But the G-orbits
in (G/H) x (G/H) correspond bijectively to the H-orbits in G/H (by intersection
with {H} x (G/H)) which in turn correspond bijectively to the double cosets HgH.
The assumption that G is coherent thus suffices to complete the proof that & is
coherent. (The terminology ‘coherent’ for groups is motivated by the fact that this
property is equivalent to the coherence of the topos of continuous G-sets.)

We turn to the proof that (iii) implies (iv). Assume (iii), and let .7y,..., .7, be the
completions of .7; n is finite by (b,). In the syntactic site (¢, J') described in Section
1, let «” be the full subcategory consisting of those {x |¢(x)} for which ¢(x) is an
atom in the Lindenbaum algebra of formulas with free variables among x. (For the
sake of brevity, we confuse a formula with its ./-provable-equivalence class.) For
any object {y |w(y)} of #’, we obtain a covering by objects of #” as follows. The
finiteness of the Lindenbaum algebra (condition (b)) lets us express y( y) as a finite
disjunction of atoms, say V.., ¢;(»). By condition (a), we may take each ¢; to be
geometric, so each {x](p,-(x)} is an object of #%”. These objects clearly cover
{y lu/(y)} via the morphisms [x~y|¢,»(x)/\x=y]. By the comparison lemma [4,
Iil. 4.1}, the topos &(.77) of sheaves on (%', J’) is also the topos of sheaves on
(»",J"), where J” is the topology on #” induced by J'. For each atom ¢(x), the
formulas w(x) that it ./-provably implies constitute a complete type, and the
sentences that it ./-provably implies therefore constitute one of the completions ./
of ./. This .7 is the unique completion of ./ with which ¢(x) is consistent. If there is
a morphist [x—y | 6(x, y)] in »” from {x |p(x)} to { ¥ |w(»)}, then, since O(x, y) ./~
provably imnplies ¢(x) and w( ), all three of these formulas are consistent with the
same complaztion of ./. Thus, »” is the disjoint union of n full subcategories ¢,
each consisting of the {xld)(x)} where ¢(x) is consistent with a particular .7;. It
follows that ¢ is the coproduct of the topoi of sheaves on these components ¢ (for
the induced topologies). These components are just the sites (# “, J”) associated to
the theories ./, so we assume, without loss of generality, that ./ itself is complete,
ie. that n=1.

In «”, each morphism [x—y lG(x, »n:ix | o)} —{y l w(y)} is a covering. To see
this, we note that the consistent (with /') formula ¢(x) ./~-provably implies Jy
(8(x, ) Aw(y)), by definition of morphism. So x 6(x, y) is ./-consistent with w( ).
But w(y), being at atom, /-provably implies everything ./-consistent with it, so
w(y)—dx 6(x, y)is ./-provable, as required. (Note that this shows that ¢ is atomic.)

To construct a group G as in (iv), we let M be a model of ./~ with the following
homogeneity property (tfor all n): If @ and b are two n-tuples from M that satisfy
exactly the same formulas (equivalently: that satisfy the same atom of the Linden-
baum algebra for n variables) then M has an automorphism sending a to b. Such a
model exists; if ./ is countable its unique countable model will do, and in any case a
special model will do [3, Theorem 5.1.17). Let G be the automorphism group of M,
and let the topology of G be defined by declaring a basis of neighborhoods of the
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identity e to consist of the subgroups
H,={geG | g fixes each element of a}

for finite tuples @ from M.

Since every open subgroup includes some H,, the objects G/H, generate the topos
# of continuous G-sets. We shall show that ¢ and .# are equivalent by showing that
the sites of definition, (¢", J”) for 4 and the full subcategory .«/ of objects G/H,, for
#, are equivalent. Since all morphisms in .# between objects of .« are epic, .«# is an
atomic site. Since (%7, J”) is also an atomic site, we need only check that .« and «”
are equivalent as categories. To do this, we define a functor F sending an arbitrary
object {x |¢(x)} of v” to G/H,, where a is some (selected) tuple in M satisfying
¢(x). If [x—y la{x,y)] . {x|¢(x)}-+{y Iw(y)} is a morphism in ¢ ” and if @ and b
are the selected solutions of @(x) and y(y), then F takes this morphism to the map
of G-sets, a: G/H,—~ G/H), defined as follows. From the definition of morphism in
+" and the fact that M is a model of .7, it follows that there is a unique b’ in M
satisfying 6(a, b’) and therefore also y(b’). From the homogeneity property of M, it
follows that there exists g€ G mapping b to b’. We then have gHpg ' = Hypy= Hy
and, because &’ is definable from a by 6, H,C Hy. We define a by a(qH,) =qgH,
and leave to the reader the straightforward verification that this is well defined. We
also leave to the reader the equally straightforward but more tedious verification
that the F we have defined is a functor. To see that it is faithful, suppose that two
morphisms, given by formulas ' and 62, lead to the samz @, and let &' and b2, g'
and g? be the corresponding b’ and g as in the preceding discussion. Since a(H,) =
g'Hy=g?H,, we infer that g'=g?. h for some he H,, which implies b' = b2, so we
may revert to the notation b’. Now we have both 8'(a, b’) and 6*(a, b’) holding in M,
so dy (8'(x, y)AG*(x, y)) is satisfied by a, hence ./-consistent with @(x), hence ./-
provable from ¢(x) as ¢(x) is an atom. It immediately follows that #' and #° define
the same morphism. Thus, F is faithful.

To see that F is full, let any G-equivariant map a: G/H,—G/H, be given. We
attempt to reverse the steps in the definition of F in order to find a morphism
[x—~p |0(x, »)] that F maps to a. Choose g so that gH,=a(H,); then equivariance
yields qgH, = a(qH,). Choose b’ = g(b). Choose 8(x, y) to be an atom satisfied in M
by a, b’; this is possible since the Lindenbaum algebra is finite. We need only check
that 6 defines a morphism from {x |¢(x)} to{y | w(y)}, i.e. that

Vx Vy (8(x, ¥) = o(xX)Ay(y)),
Vx (p(x)— Ty 0(x, v)),
Vx Vy VZ (0(x, ))AO(X,2)~y=2)

are ./-provable. The first two are easy because, in each of these, the antecedent is an
atom, so it suffices to show that the antecedent and consequent are ./-consistent
with each other, and the consistency is clear since @ and b’ satisfy these clauses. The
third sequent is a bit harder, but we note that it suffices to prove that it holds in M
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(since .7 is complete}, and for this it suffices to prove that, in M
Vy Vz (6(a, y)\O(a,2)—y =2). (8)

Indeed, any x satisfying 6(x, y)A6(x, ) would satisfy ¢(x) and would therefore, as
o(x) is an atom, satisfy exactly the same formulas as a. To establish (8), suppose
that there were a b”, distinct from &', satisfying @(a, b”). Since the tuples (a, b') and
(a, b") satisfy the same atom @, there is an automorphism z € G sending the first to
the second. Thus, ze H, but z¢ Hy. Since ze H,, z stabilizes the element
a(H,) = gHyin G/H). This means z € gHyg ' = H), a contradiction. This completes
the prooi that F is full.

Finally, to see that F is essentially surjective on objects, consider any object G/H,
of /. Let ¢(x) be an atom satisfied in M by c, and let a be the selected solution of
@(x), so F takes {xiq)(x)} to G/H,. The homogeneity property of M provides a
ge G that sends atoc, so H.=gH,g . It is easy t- check that G/H, is isomorphic
to G/H, by the map sencing gH_ to qgH,. This completes the proof that F is an
equivalence and thus also the proof that # is equivalent to the topos of continuous
G-sets.

To complete the proof of Theorem 2, we verify that G is coherent. Since each
open subgroup includes H, for some finite sequence @ in M, we need only check
that, for cach fixed n-tuple a, the number of double cosets H,gH, is finite. We
assert that such a double coset is completely determined by an atom ¢(x, y) (in 2n
variables) satisfied in M by a, g(a). This will finish the proof since there are only
finitely many such atoms. To prove the assertion, we consider two elements
£,,2:€ G such that a,g2,(a) and a, g,(a) satisfy the same atom. Then there is an
automorphism 4 € G sending the first of these sequences to the second. Since it fixes
a, h beclongs to H,. Also, the automorphism h’=g,"'h “lg, fixes a, hence belongs to
H,. But g.=hgh’, so H,g,H,= H,g,H,. This completes the proof of Theorem 2.
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